

Rod Seals

Kefloy O-Cap® Type 2553-

Double acting rod seal for reciprocating movements.

Consists of a thin ring of Kefloy energized by a rubber O-ring.

Eliminates frictional problems of O-rings.

Designed for Swedish Standard and Japanese Standard O-ring grooves.

Rod Seals

Kefloy O-Cap® Type 2553-

O-Cap® Type 2553-

O-Cap® type 2553- is a double acting rod seal. It uses the same groove dimensions as O-Ring +1 Back-Up Ring according to Swedish and Japanese standard. It consists of a Kefloy® ring energized by a rubber O-Ring. The O-Cap® is designed to eliminate the frictional - and wear problems, which may occur with rubber O-Rings.

- O-Cap® is pressure responsive.
- O-Cap® can be used with a great variety of fluids. Kefloy® is compatible with virtually all fluids.
- O-Cap® is designed to replace rubber O-Rings where they cause frictional or wear problems.
- O-Caps® should not be used for new designs.

Working Range

Pressure

Up to 35 MPa. For pressures exceeding 35 MPa, please contact your O.L. Seals distributor.

Temperature

-50°C to + 200°C, though limited by O-ring. For temperatures exceeding this temperature range, please contact your O.L. Seals distributor.

Velocity

Reciprocating up to 15 m/sec. Frequency: Up to 5 HZ. Should not be used for rotating or oscillating applications.

Fluids

Kefloy® is compatible with virtually all fluids – liquids as well as gases. By selecting the right compound for the O-Ring energizer, it is possible to cover almost all fluids.

Advantages

- -Fits Swedish standard O-Ring grooves
- -Small installation dimensions
- -Good wear resistance
- -Low friction

- -No stick-slip
- -Simple groove design

Fluid

Grease

Hydraulic oil Motor oil

Other mineral oils

- -Available for all diameters up to 2.500 mm
- -Compatible with virtually all fluids

Material Selection Guide

Fluid	Mating surface	O-Cap® compound			
Hydraulic oil	Steel	Kefloy® 32			
Motor oil	Chrome plated steel				
Grease	Cast iron				
Other mineral oils	Aluminium	Kefloy® 25			
Water	Stainless steel	Kefloy® 90			
Water hydraulic	Bronze				
Steam	Soft metals				
Non lubricating fluids					
Air, dry or lubricated	Steel	Kefloy® 25			
	Chrome plated steel	Kefloy® 28			
	Cast iron	Kefloy® 90			
	Aluminium				
	Stainless steel				
	Bronze				
	Soft metals				

	Synthetic hydraulic fluids	Special compounds							
	O-Ring manufacturer's recommendation for the								
actual fluid should always be followed.									

For other fluids or sealing surfaces, please consult your O.L. Seals distributor.

Other mineral ons	At temperatures above 120 t					
Water, cold	use Viton O-Rings					
Water hydraulic						
Air, dry or lubricated						
Water, hot	EPDM					
Steam						
Synthetic hydraulic fluids	Special compounds					
O-Ring manufacturer's recommendation for the						

O-Ring compound

At temperatures above 120°C

NBR (Buna N)

Rod Seals

Kefloy O-Cap® Type 2553-

Seal Selection Guide

Standard Series

For most double acting applications the Standard Series is the best choice.

Can be used for single acting applications where the fluid is a gas.

Light Duty Series

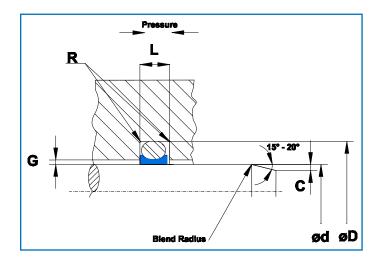
Where very low friction is required, the Light Duty Series is recommended.

Where space limitations make it necessary the light Duty Series should be chosen.

Ordering Example

O-Cap for Swedish standard O-Ring groove for O-Ring with one back-up ring.

Rod diameter: 92.7 mm


Part no 25532-0927-25
O-Cap® Type Series
Rod dia. x 10
Compound no

O-Ring size 89.1 x 5.7

O-Ring to be ordered separately

Heavy Duty Series

Where a very long service life is required the Heavy Duty Series should be chosen.

Installation Dimensions

Notches

In systems with rapid pressure changes, e.g. power steering systems, it is necessary to furnish the O-Cap® with sidewall notches. The notches ensure a quick seal response to pressure changes.

To order O-Cap® with notches – add suffix "N" behind the compound code. Example: 25532-0927-25N.

Type No.	Standard Series Rod dia.	D Groove diam.	L Groove width	R Radius	G Radial gap			C Chamfer	B O-ring ID	O-ring Cross section	
	f8/h9	H9	+0.2	Max.	2MPa	10MPa	20MPa	35MPa	Min.		
			-0		(20 bar)	(100 bar)	(200 bar)	(350 bar)			
25530	4-19.9	d+4.00	4.60	0.4	0.10	0.10	0.08	0.05	0.70	d+0.0	2.40
25531	20-45.9	d+5.00	5.40	0.4	0.15	0.15	0.10	0.07	1.00	d+0.5	3.00
25532	46-145.9	d+10.00	9.30	0.6	0.25	0.20	0.15	0.08	1.30	d+1.0	5.70
25533	146-250.9	d+15.00	13.20	0.8	0.35	0.25	0.20	0.10	2.00	d+1.5	8.40

O-Ring Size

O-Ring cross section according to installation dimensions.

O-Ring I.D. as close to dia. d+1 as possible.

O-Ring I.D. not bigger than (d+1) +3%

O-Ring I.D. not smaller than (d+1) -5%

Important Note

The limits of pressure, temperature and velocity are individual maximum values. Heat generated by the friction may cause local increase of temperature. The cooling possibilities for the system dertermines the combinations of maximum values.