

Rod Seals

Kefloy OX-Seal® Type 2603-

Very efficient double acting rod seal for reciprocating applications.

Consists of a rubber Quad ring integrated in a Kefloy SlipRing energized by two O-Rings.

Offers excellent leakage control over the whole pressure range.

Used to seal gases from liquids.

OX-Seal® Type 2603-

Is a double acting rod seal. It combines the excellent wear resistance of Kefloy® with the sealing capacity of rubber. It consists of a dynamic sliding ring of Kefloy® furnished with a rubber X-Ring and two rubber O-Ring energizing elements. OX-Seal® is pressure responsive. OX-Seal® can be used with a great variety of fluids. Kefloy® is compatible with virtually all fluids.

The unique design where an X-Ring is integrated in the sliding ring combines the sealing efficiency of rubber with the wear resistance of Kefloy®.

Working Range

Pressure

Up to 60 MPa. For pressures exceeding 40 MPa, please contact your O.L. Seals distributor.

Temperature

-30°C to + 200°C. For temperatures exceeding this temperature range, please contact your O.L. Seals distributor.

Advantages

-High sealing efficiency. -Good wear resistance -Low friction -No stick-slip

Velocity

Reciprocating up to 3 m/sec. Frequency: Up to 5 HZ. OX-Seal® should not be used for rotating or oscillating applications.

Fluids

Kefloy® is compatible with virtually all fluids – liquids as well as gases. By selecting the right compound for the O-Ring energizer, it is possible to cover almost all fluids.

- -Separate fluid / fluid or fluid / gas.
- -Small installation space.
- -Simple groove design.
- -Available for all diameters up to 2.500 mm

Material Selection Guide

Fluid	Mating surface	OX-Seal® compound			
Hydraulic oil	Steel	Kefloy® 13			
Motor oil	Steel, hardened	Kefloy® 32			
Grease	Chrome plated steel				
Other mineral oils	Cast iron				
Water	Aluminium	Kefloy® 22			
Water hydraulic	Stainless steel	Kefloy® 90			
Steam	Bronze				
Non lubricating fluids Air, dry or lubricated	Soft metals				
	Steel	Kefloy® 22			
	Steel, hardened	Kefloy® 28			
	Chrome plated steel	Kefloy® 90			
	Cast iron				
	Aluminium				
	Stainless steel				
	Bronze				
	Soft metals				

Fluid	O-Ring compound				
Hydraulic oil					
Motor oil	NBR (Buna N) 70 Shore A				
Grease					
Other mineral oils	At temperatures above 120°				
Water, cold	use Viton O-Rings				
Water hydraulic					
Air, dry or lubricated					
Water, hot	EPDM				
Steam					
Synthetic hydraulic fluids	Special compounds				

O-Ring manufacturer's recommendation for the actual fluid should always be followed.

For other fluids or sealing surfaces, please consult your O.L. Seals distributor.

Seal Selection Guide

Standard Series

For most double acting applications the Standard Series is the best choice.

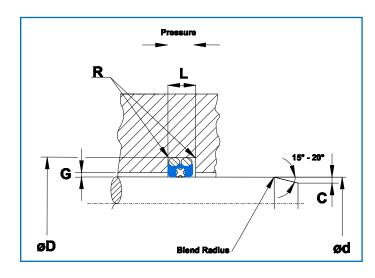
Can be used for single acting applications where the fluid is a gas.

Ordering Example

Rod diameter: 550.0 mm

Part no 26034-5500-13N OX-Seal® Type ______ Series Rod dia. x 10 ______ Compound no ______ O-Ring size 557.66 x 7.00 (2 pcs.) X-Ring size 557.61 x 5.33 O-Ring and X-Ring to be ordered separately

Installation dimensions


Notches

In systems with rapid pressure changes, e.g. power steering systems, it is necessary to furnish the OX-Seals® with sidewall notches. The notches ensure a quick seal response to pressure changes.

Light Duty Series

Where very low friction is required, the Light Duty Series is recommended.

Where space limitations make it necessary the light Duty Series should be chosen.

To order OX-Seal® with notches – add suffix "N" behind the compound code. Example: 26033-2200-13N

Type No.	Standard Series Rod dia.	D Groove diam.	L Groove width	R Radius	G Radial gap			C Chamfer	B O-ring ID	O-ring Cross section	X-ring Cross section
	f8/h9	H9	+0.2 -0	Max.	10MPa (100 bar)	20MPa (200 bar)	40MPa (400 bar)	Min.			
26031	40-79.9	d+10.0	6.3	0.6	0.3	0.2	0.15	1.3	d+4.5	2.62	1.78
26032	80-132.9	d+13.0	8.3	1.0	0.4	0.3	0.15	2.0	d+7.0	3.53	2.62
26033	133-462.9	d+18.0	12.3	1.2	0.4	0.3	0.2	2.5	d+9.0	5.33	3.53
26034	463-700.0	d+31.0	16.3	1.8	0.5	0.4	0.3	2.5	d+19.0	6.99	5.33

O-Ring Size

O-Ring cross section according to installation dimensions. O-Ring I.D. as close to dia. B as possible. O-Ring I.D. not bigger than B +3%

O-Ring I.D. not smaller than B -5%

X-Ring Size

X-Ring cross section according to installation dimensions. X-Ring I.D. not bigger than d+3% X-Ring I.D. not smaller than d

Note

In some countries seals similar to OX-Seals are patented. Therefore OX-Seals should not be used in these areas.

Important Note

The limits of pressure, temperature and velocity are individual maximum values. Heat generated by the friction may cause local increase of temperature. The cooling possibilities for the system dertermines the combinations of maximum values.